LHC IR Upgrade Work outline

Riccardo de Maria

CERN AB-ABP-LOC

February 21, 2007

Motivations

Work outline

Studies

Studies at Fermilab

Motivations

The has two high luminosity experiment: Atlas and CMS.

The nominal peak luminosity is 10^{34} cm⁻²s⁻¹.

After 7 years of operation the IR magnets will reach the radiation damage limit and they will need to be replaced.

An R&D program has been launched in order to identify alternatives layouts able to improve the luminosity performance.

The luminosity goal for the upgrade is 10^{35} cm⁻²s⁻¹.

A factor 2 is supposed to come from the new IR layout.

Work outline

My work is focused on alternative layouts:

► dipole first based on Nb3Sn technology IP D1 TAS D2 Q1 Q2 Q3

quadrupole first based of NbTi technology

Both layouts aim to reduce β^* from 0.55cm to 0.25cm.

Dipole first Nb3Sn

Quadrupole first NbTi

Studies

My interests are in:

- linear optic optimization;
- chromatic aberration and their compensation;
- DA optimization;
- radiation protection and heat load;
- operational limitations;
- sensitivity to ground motion, power supply ripple;
- sensitivity to noise and emittance growth.

Studies at Fermilab

The purposes of my visit at Fermilab are:

- start energy deposition studies using MARS, be able to understand the issues and try to optimize the optics to minimize their effects (Nikolai Mokhov);
- exchange informations about chromatic aberration and strategies for their compensation (Tanaji Sen, John Johnstone);
- acquire some operational experience of an hadron collider. (TEL beam-beam compensation, Vladimir Shiltsev, Vsevolod Kamerdzhiev);
- field fluctuation measurement (Vladimir Shiltsev).

1.5 s[m]

2.0

2.5

3.0 x1e+4

0.5

1.0

